If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+6x^2=36
We move all terms to the left:
2x+6x^2-(36)=0
a = 6; b = 2; c = -36;
Δ = b2-4ac
Δ = 22-4·6·(-36)
Δ = 868
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{868}=\sqrt{4*217}=\sqrt{4}*\sqrt{217}=2\sqrt{217}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{217}}{2*6}=\frac{-2-2\sqrt{217}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{217}}{2*6}=\frac{-2+2\sqrt{217}}{12} $
| X2-4y2=37 | | x*4x=0 | | -1/3a-2-2/3a=-5 | | 8u+21/4=3u+7 | | 5x/2+3=21/2 | | (5/2)x+3=21/2 | | 9x-32=-12 | | 1.2^(2x)=0 | | X^2+51x-540=0 | | X^2-51x+540=0 | | 2(2-5x)=6 | | f(21)-12=f(15)-3 | | 8x+33=15x-37 | | f(21)=12 | | 5x-3+3x=4x+33 | | -x+6x-8=2x+7-x | | 4500(1+0,06x)=6000 | | -x×(-x)+6x-8=2x+7 | | -x+6x-8=2x+7 | | 9-x/9=-10 | | X+4+3x+4+2x-1=22 | | x^2+80x-50=0 | | 0=5x^2-3x+100 | | 1+0.1x=1.1^x | | 7k^2+14k=0 | | x=9+1.5x | | 5x-2x-16=0 | | 2x/(5x/60)=24 | | (5^x+1)(7^x)=3^2x+1 | | 43.02=x+(x*0.78) | | 43,02=x+(x•0,78) | | 43,02=x+(x•0.78) |